\(\int \frac {c+d x+e x^2+f x^3+g x^4}{a-b x^4} \, dx\) [171]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 31, antiderivative size = 148 \[ \int \frac {c+d x+e x^2+f x^3+g x^4}{a-b x^4} \, dx=-\frac {g x}{b}+\frac {\left (b c-\sqrt {a} \sqrt {b} e+a g\right ) \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{2 a^{3/4} b^{5/4}}+\frac {\left (b c+\sqrt {a} \sqrt {b} e+a g\right ) \text {arctanh}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{2 a^{3/4} b^{5/4}}+\frac {d \text {arctanh}\left (\frac {\sqrt {b} x^2}{\sqrt {a}}\right )}{2 \sqrt {a} \sqrt {b}}-\frac {f \log \left (a-b x^4\right )}{4 b} \]

[Out]

-g*x/b-1/4*f*ln(-b*x^4+a)/b+1/2*d*arctanh(x^2*b^(1/2)/a^(1/2))/a^(1/2)/b^(1/2)+1/2*arctan(b^(1/4)*x/a^(1/4))*(
b*c+a*g-e*a^(1/2)*b^(1/2))/a^(3/4)/b^(5/4)+1/2*arctanh(b^(1/4)*x/a^(1/4))*(b*c+a*g+e*a^(1/2)*b^(1/2))/a^(3/4)/
b^(5/4)

Rubi [A] (verified)

Time = 0.13 (sec) , antiderivative size = 148, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.258, Rules used = {1899, 1262, 649, 214, 266, 1901, 1181, 211} \[ \int \frac {c+d x+e x^2+f x^3+g x^4}{a-b x^4} \, dx=\frac {\arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ) \left (-\sqrt {a} \sqrt {b} e+a g+b c\right )}{2 a^{3/4} b^{5/4}}+\frac {\text {arctanh}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ) \left (\sqrt {a} \sqrt {b} e+a g+b c\right )}{2 a^{3/4} b^{5/4}}+\frac {d \text {arctanh}\left (\frac {\sqrt {b} x^2}{\sqrt {a}}\right )}{2 \sqrt {a} \sqrt {b}}-\frac {f \log \left (a-b x^4\right )}{4 b}-\frac {g x}{b} \]

[In]

Int[(c + d*x + e*x^2 + f*x^3 + g*x^4)/(a - b*x^4),x]

[Out]

-((g*x)/b) + ((b*c - Sqrt[a]*Sqrt[b]*e + a*g)*ArcTan[(b^(1/4)*x)/a^(1/4)])/(2*a^(3/4)*b^(5/4)) + ((b*c + Sqrt[
a]*Sqrt[b]*e + a*g)*ArcTanh[(b^(1/4)*x)/a^(1/4)])/(2*a^(3/4)*b^(5/4)) + (d*ArcTanh[(Sqrt[b]*x^2)/Sqrt[a]])/(2*
Sqrt[a]*Sqrt[b]) - (f*Log[a - b*x^4])/(4*b)

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 266

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]

Rule 649

Int[((d_) + (e_.)*(x_))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Dist[d, Int[1/(a + c*x^2), x], x] + Dist[e, Int[x/
(a + c*x^2), x], x] /; FreeQ[{a, c, d, e}, x] &&  !NiceSqrtQ[(-a)*c]

Rule 1181

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-a)*c, 2]}, Dist[e/2 + c*(d/(2*q))
, Int[1/(-q + c*x^2), x], x] + Dist[e/2 - c*(d/(2*q)), Int[1/(q + c*x^2), x], x]] /; FreeQ[{a, c, d, e}, x] &&
 NeQ[c*d^2 - a*e^2, 0] && PosQ[(-a)*c]

Rule 1262

Int[(x_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[(d + e*x)^q
*(a + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, c, d, e, p, q}, x]

Rule 1899

Int[(Pq_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], j, k}, Int[Sum[x^j*Sum[Coeff[P
q, x, j + k*(n/2)]*x^(k*(n/2)), {k, 0, 2*((q - j)/n) + 1}]*(a + b*x^n)^p, {j, 0, n/2 - 1}], x]] /; FreeQ[{a, b
, p}, x] && PolyQ[Pq, x] && IGtQ[n/2, 0] &&  !PolyQ[Pq, x^(n/2)]

Rule 1901

Int[(Pq_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Int[ExpandIntegrand[Pq/(a + b*x^n), x], x] /; FreeQ[{a, b}, x
] && PolyQ[Pq, x] && IntegerQ[n]

Rubi steps \begin{align*} \text {integral}& = \int \left (\frac {x \left (d+f x^2\right )}{a-b x^4}+\frac {c+e x^2+g x^4}{a-b x^4}\right ) \, dx \\ & = \int \frac {x \left (d+f x^2\right )}{a-b x^4} \, dx+\int \frac {c+e x^2+g x^4}{a-b x^4} \, dx \\ & = \frac {1}{2} \text {Subst}\left (\int \frac {d+f x}{a-b x^2} \, dx,x,x^2\right )+\int \left (-\frac {g}{b}+\frac {b c+a g+b e x^2}{b \left (a-b x^4\right )}\right ) \, dx \\ & = -\frac {g x}{b}+\frac {\int \frac {b c+a g+b e x^2}{a-b x^4} \, dx}{b}+\frac {1}{2} d \text {Subst}\left (\int \frac {1}{a-b x^2} \, dx,x,x^2\right )+\frac {1}{2} f \text {Subst}\left (\int \frac {x}{a-b x^2} \, dx,x,x^2\right ) \\ & = -\frac {g x}{b}+\frac {d \tanh ^{-1}\left (\frac {\sqrt {b} x^2}{\sqrt {a}}\right )}{2 \sqrt {a} \sqrt {b}}-\frac {f \log \left (a-b x^4\right )}{4 b}+\frac {1}{2} \left (e-\frac {b c+a g}{\sqrt {a} \sqrt {b}}\right ) \int \frac {1}{-\sqrt {a} \sqrt {b}-b x^2} \, dx+\frac {1}{2} \left (e+\frac {b c+a g}{\sqrt {a} \sqrt {b}}\right ) \int \frac {1}{\sqrt {a} \sqrt {b}-b x^2} \, dx \\ & = -\frac {g x}{b}+\frac {\left (b c-\sqrt {a} \sqrt {b} e+a g\right ) \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{2 a^{3/4} b^{5/4}}+\frac {\left (b c+\sqrt {a} \sqrt {b} e+a g\right ) \tanh ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{2 a^{3/4} b^{5/4}}+\frac {d \tanh ^{-1}\left (\frac {\sqrt {b} x^2}{\sqrt {a}}\right )}{2 \sqrt {a} \sqrt {b}}-\frac {f \log \left (a-b x^4\right )}{4 b} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.08 (sec) , antiderivative size = 249, normalized size of antiderivative = 1.68 \[ \int \frac {c+d x+e x^2+f x^3+g x^4}{a-b x^4} \, dx=\frac {-4 a^{3/4} \sqrt [4]{b} g x+2 \left (b c-\sqrt {a} \sqrt {b} e+a g\right ) \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )-\left (b c+\sqrt [4]{a} b^{3/4} d+\sqrt {a} \sqrt {b} e+a g\right ) \log \left (\sqrt [4]{a}-\sqrt [4]{b} x\right )+b c \log \left (\sqrt [4]{a}+\sqrt [4]{b} x\right )-\sqrt [4]{a} b^{3/4} d \log \left (\sqrt [4]{a}+\sqrt [4]{b} x\right )+\sqrt {a} \sqrt {b} e \log \left (\sqrt [4]{a}+\sqrt [4]{b} x\right )+a g \log \left (\sqrt [4]{a}+\sqrt [4]{b} x\right )+\sqrt [4]{a} b^{3/4} d \log \left (\sqrt {a}+\sqrt {b} x^2\right )-a^{3/4} \sqrt [4]{b} f \log \left (a-b x^4\right )}{4 a^{3/4} b^{5/4}} \]

[In]

Integrate[(c + d*x + e*x^2 + f*x^3 + g*x^4)/(a - b*x^4),x]

[Out]

(-4*a^(3/4)*b^(1/4)*g*x + 2*(b*c - Sqrt[a]*Sqrt[b]*e + a*g)*ArcTan[(b^(1/4)*x)/a^(1/4)] - (b*c + a^(1/4)*b^(3/
4)*d + Sqrt[a]*Sqrt[b]*e + a*g)*Log[a^(1/4) - b^(1/4)*x] + b*c*Log[a^(1/4) + b^(1/4)*x] - a^(1/4)*b^(3/4)*d*Lo
g[a^(1/4) + b^(1/4)*x] + Sqrt[a]*Sqrt[b]*e*Log[a^(1/4) + b^(1/4)*x] + a*g*Log[a^(1/4) + b^(1/4)*x] + a^(1/4)*b
^(3/4)*d*Log[Sqrt[a] + Sqrt[b]*x^2] - a^(3/4)*b^(1/4)*f*Log[a - b*x^4])/(4*a^(3/4)*b^(5/4))

Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 1.51 (sec) , antiderivative size = 65, normalized size of antiderivative = 0.44

method result size
risch \(-\frac {g x}{b}+\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{4} b -a \right )}{\sum }\frac {\left (-\textit {\_R}^{3} b f -\textit {\_R}^{2} b e -\textit {\_R} b d -a g -b c \right ) \ln \left (x -\textit {\_R} \right )}{\textit {\_R}^{3}}}{4 b^{2}}\) \(65\)
default \(-\frac {g x}{b}+\frac {\frac {\left (a g +b c \right ) \left (\frac {a}{b}\right )^{\frac {1}{4}} \left (\ln \left (\frac {x +\left (\frac {a}{b}\right )^{\frac {1}{4}}}{x -\left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )+2 \arctan \left (\frac {x}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )\right )}{4 a}+\frac {b d \ln \left (\frac {a +x^{2} \sqrt {a b}}{a -x^{2} \sqrt {a b}}\right )}{4 \sqrt {a b}}-\frac {e \left (2 \arctan \left (\frac {x}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )-\ln \left (\frac {x +\left (\frac {a}{b}\right )^{\frac {1}{4}}}{x -\left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )\right )}{4 \left (\frac {a}{b}\right )^{\frac {1}{4}}}-\frac {f \ln \left (-b \,x^{4}+a \right )}{4}}{b}\) \(167\)

[In]

int((g*x^4+f*x^3+e*x^2+d*x+c)/(-b*x^4+a),x,method=_RETURNVERBOSE)

[Out]

-g*x/b+1/4/b^2*sum((-_R^3*b*f-_R^2*b*e-_R*b*d-a*g-b*c)/_R^3*ln(x-_R),_R=RootOf(_Z^4*b-a))

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 42.65 (sec) , antiderivative size = 592528, normalized size of antiderivative = 4003.57 \[ \int \frac {c+d x+e x^2+f x^3+g x^4}{a-b x^4} \, dx=\text {Too large to display} \]

[In]

integrate((g*x^4+f*x^3+e*x^2+d*x+c)/(-b*x^4+a),x, algorithm="fricas")

[Out]

Too large to include

Sympy [F(-1)]

Timed out. \[ \int \frac {c+d x+e x^2+f x^3+g x^4}{a-b x^4} \, dx=\text {Timed out} \]

[In]

integrate((g*x**4+f*x**3+e*x**2+d*x+c)/(-b*x**4+a),x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 202, normalized size of antiderivative = 1.36 \[ \int \frac {c+d x+e x^2+f x^3+g x^4}{a-b x^4} \, dx=-\frac {g x}{b} + \frac {\frac {2 \, {\left (b^{\frac {3}{2}} c - \sqrt {a} b e + a \sqrt {b} g\right )} \arctan \left (\frac {\sqrt {b} x}{\sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {a} \sqrt {\sqrt {a} \sqrt {b}} \sqrt {b}} + \frac {{\left (b^{\frac {3}{2}} d - \sqrt {a} b f\right )} \log \left (\sqrt {b} x^{2} + \sqrt {a}\right )}{\sqrt {a} b} - \frac {{\left (b^{\frac {3}{2}} d + \sqrt {a} b f\right )} \log \left (\sqrt {b} x^{2} - \sqrt {a}\right )}{\sqrt {a} b} - \frac {{\left (b^{\frac {3}{2}} c + \sqrt {a} b e + a \sqrt {b} g\right )} \log \left (\frac {\sqrt {b} x - \sqrt {\sqrt {a} \sqrt {b}}}{\sqrt {b} x + \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {a} \sqrt {\sqrt {a} \sqrt {b}} \sqrt {b}}}{4 \, b} \]

[In]

integrate((g*x^4+f*x^3+e*x^2+d*x+c)/(-b*x^4+a),x, algorithm="maxima")

[Out]

-g*x/b + 1/4*(2*(b^(3/2)*c - sqrt(a)*b*e + a*sqrt(b)*g)*arctan(sqrt(b)*x/sqrt(sqrt(a)*sqrt(b)))/(sqrt(a)*sqrt(
sqrt(a)*sqrt(b))*sqrt(b)) + (b^(3/2)*d - sqrt(a)*b*f)*log(sqrt(b)*x^2 + sqrt(a))/(sqrt(a)*b) - (b^(3/2)*d + sq
rt(a)*b*f)*log(sqrt(b)*x^2 - sqrt(a))/(sqrt(a)*b) - (b^(3/2)*c + sqrt(a)*b*e + a*sqrt(b)*g)*log((sqrt(b)*x - s
qrt(sqrt(a)*sqrt(b)))/(sqrt(b)*x + sqrt(sqrt(a)*sqrt(b))))/(sqrt(a)*sqrt(sqrt(a)*sqrt(b))*sqrt(b)))/b

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 299 vs. \(2 (108) = 216\).

Time = 0.27 (sec) , antiderivative size = 299, normalized size of antiderivative = 2.02 \[ \int \frac {c+d x+e x^2+f x^3+g x^4}{a-b x^4} \, dx=-\frac {\sqrt {2} {\left (b^{2} c + a b g - \sqrt {2} \left (-a b^{3}\right )^{\frac {1}{4}} b d + \sqrt {-a b} b e\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, x + \sqrt {2} \left (-\frac {a}{b}\right )^{\frac {1}{4}}\right )}}{2 \, \left (-\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{4 \, \left (-a b^{3}\right )^{\frac {3}{4}}} - \frac {\sqrt {2} {\left (b^{2} c + a b g + \sqrt {2} \left (-a b^{3}\right )^{\frac {1}{4}} b d - \sqrt {-a b} b e\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, x - \sqrt {2} \left (-\frac {a}{b}\right )^{\frac {1}{4}}\right )}}{2 \, \left (-\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{4 \, \left (-a b^{3}\right )^{\frac {3}{4}}} - \frac {\sqrt {2} {\left (b^{2} c + a b g - \sqrt {-a b} b e\right )} \log \left (x^{2} + \sqrt {2} x \left (-\frac {a}{b}\right )^{\frac {1}{4}} + \sqrt {-\frac {a}{b}}\right )}{8 \, \left (-a b^{3}\right )^{\frac {3}{4}}} + \frac {\sqrt {2} {\left (b^{2} c + a b g - \sqrt {-a b} b e\right )} \log \left (x^{2} - \sqrt {2} x \left (-\frac {a}{b}\right )^{\frac {1}{4}} + \sqrt {-\frac {a}{b}}\right )}{8 \, \left (-a b^{3}\right )^{\frac {3}{4}}} - \frac {g x}{b} - \frac {f \log \left ({\left | b x^{4} - a \right |}\right )}{4 \, b} \]

[In]

integrate((g*x^4+f*x^3+e*x^2+d*x+c)/(-b*x^4+a),x, algorithm="giac")

[Out]

-1/4*sqrt(2)*(b^2*c + a*b*g - sqrt(2)*(-a*b^3)^(1/4)*b*d + sqrt(-a*b)*b*e)*arctan(1/2*sqrt(2)*(2*x + sqrt(2)*(
-a/b)^(1/4))/(-a/b)^(1/4))/(-a*b^3)^(3/4) - 1/4*sqrt(2)*(b^2*c + a*b*g + sqrt(2)*(-a*b^3)^(1/4)*b*d - sqrt(-a*
b)*b*e)*arctan(1/2*sqrt(2)*(2*x - sqrt(2)*(-a/b)^(1/4))/(-a/b)^(1/4))/(-a*b^3)^(3/4) - 1/8*sqrt(2)*(b^2*c + a*
b*g - sqrt(-a*b)*b*e)*log(x^2 + sqrt(2)*x*(-a/b)^(1/4) + sqrt(-a/b))/(-a*b^3)^(3/4) + 1/8*sqrt(2)*(b^2*c + a*b
*g - sqrt(-a*b)*b*e)*log(x^2 - sqrt(2)*x*(-a/b)^(1/4) + sqrt(-a/b))/(-a*b^3)^(3/4) - g*x/b - 1/4*f*log(abs(b*x
^4 - a))/b

Mupad [B] (verification not implemented)

Time = 9.89 (sec) , antiderivative size = 5082, normalized size of antiderivative = 34.34 \[ \int \frac {c+d x+e x^2+f x^3+g x^4}{a-b x^4} \, dx=\text {Too large to display} \]

[In]

int((c + d*x + e*x^2 + f*x^3 + g*x^4)/(a - b*x^4),x)

[Out]

symsum(log(b^2*c^2*e - b^2*c*d^2 + a^2*e*g^2 - a^2*f^2*g - b^2*d^3*x - a*b*e^3 - a*b*c*f^2 - a*b*d^2*g - 16*ro
ot(256*a^3*b^5*z^4 + 256*a^3*b^4*f*z^3 - 64*a^3*b^3*e*g*z^2 - 64*a^2*b^4*c*e*z^2 + 96*a^3*b^3*f^2*z^2 - 32*a^2
*b^4*d^2*z^2 - 32*a^3*b^2*e*f*g*z - 32*a^2*b^3*c*e*f*z + 32*a^2*b^3*c*d*g*z + 16*a^3*b^2*d*g^2*z - 16*a^2*b^3*
d^2*f*z + 16*a^2*b^3*d*e^2*z + 16*a*b^4*c^2*d*z + 16*a^3*b^2*f^3*z + 8*a^2*b^2*c*d*f*g - 4*a^2*b^2*d^2*e*g + 4
*a^2*b^2*d*e^2*f + 4*a^2*b^2*c*e^2*g - 4*a^2*b^2*c*e*f^2 - 4*a^3*b*e*f^2*g + 4*a^3*b*d*f*g^2 + 4*a*b^3*c^2*d*f
 - 4*a*b^3*c*d^2*e - 4*a^3*b*c*g^3 - 4*a*b^3*c^3*g - 6*a^2*b^2*c^2*g^2 - 2*a^2*b^2*d^2*f^2 + 2*a^3*b*e^2*g^2 +
 2*a*b^3*c^2*e^2 + a^3*b*f^4 + a*b^3*d^4 - a^2*b^2*e^4 - a^4*g^4 - b^4*c^4, z, k)^2*a*b^3*c - 4*root(256*a^3*b
^5*z^4 + 256*a^3*b^4*f*z^3 - 64*a^3*b^3*e*g*z^2 - 64*a^2*b^4*c*e*z^2 + 96*a^3*b^3*f^2*z^2 - 32*a^2*b^4*d^2*z^2
 - 32*a^3*b^2*e*f*g*z - 32*a^2*b^3*c*e*f*z + 32*a^2*b^3*c*d*g*z + 16*a^3*b^2*d*g^2*z - 16*a^2*b^3*d^2*f*z + 16
*a^2*b^3*d*e^2*z + 16*a*b^4*c^2*d*z + 16*a^3*b^2*f^3*z + 8*a^2*b^2*c*d*f*g - 4*a^2*b^2*d^2*e*g + 4*a^2*b^2*d*e
^2*f + 4*a^2*b^2*c*e^2*g - 4*a^2*b^2*c*e*f^2 - 4*a^3*b*e*f^2*g + 4*a^3*b*d*f*g^2 + 4*a*b^3*c^2*d*f - 4*a*b^3*c
*d^2*e - 4*a^3*b*c*g^3 - 4*a*b^3*c^3*g - 6*a^2*b^2*c^2*g^2 - 2*a^2*b^2*d^2*f^2 + 2*a^3*b*e^2*g^2 + 2*a*b^3*c^2
*e^2 + a^3*b*f^4 + a*b^3*d^4 - a^2*b^2*e^4 - a^4*g^4 - b^4*c^4, z, k)*b^3*c^2*x - b^2*c^2*f*x - a^2*f*g^2*x -
16*root(256*a^3*b^5*z^4 + 256*a^3*b^4*f*z^3 - 64*a^3*b^3*e*g*z^2 - 64*a^2*b^4*c*e*z^2 + 96*a^3*b^3*f^2*z^2 - 3
2*a^2*b^4*d^2*z^2 - 32*a^3*b^2*e*f*g*z - 32*a^2*b^3*c*e*f*z + 32*a^2*b^3*c*d*g*z + 16*a^3*b^2*d*g^2*z - 16*a^2
*b^3*d^2*f*z + 16*a^2*b^3*d*e^2*z + 16*a*b^4*c^2*d*z + 16*a^3*b^2*f^3*z + 8*a^2*b^2*c*d*f*g - 4*a^2*b^2*d^2*e*
g + 4*a^2*b^2*d*e^2*f + 4*a^2*b^2*c*e^2*g - 4*a^2*b^2*c*e*f^2 - 4*a^3*b*e*f^2*g + 4*a^3*b*d*f*g^2 + 4*a*b^3*c^
2*d*f - 4*a*b^3*c*d^2*e - 4*a^3*b*c*g^3 - 4*a*b^3*c^3*g - 6*a^2*b^2*c^2*g^2 - 2*a^2*b^2*d^2*f^2 + 2*a^3*b*e^2*
g^2 + 2*a*b^3*c^2*e^2 + a^3*b*f^4 + a*b^3*d^4 - a^2*b^2*e^4 - a^4*g^4 - b^4*c^4, z, k)^2*a^2*b^2*g + 16*root(2
56*a^3*b^5*z^4 + 256*a^3*b^4*f*z^3 - 64*a^3*b^3*e*g*z^2 - 64*a^2*b^4*c*e*z^2 + 96*a^3*b^3*f^2*z^2 - 32*a^2*b^4
*d^2*z^2 - 32*a^3*b^2*e*f*g*z - 32*a^2*b^3*c*e*f*z + 32*a^2*b^3*c*d*g*z + 16*a^3*b^2*d*g^2*z - 16*a^2*b^3*d^2*
f*z + 16*a^2*b^3*d*e^2*z + 16*a*b^4*c^2*d*z + 16*a^3*b^2*f^3*z + 8*a^2*b^2*c*d*f*g - 4*a^2*b^2*d^2*e*g + 4*a^2
*b^2*d*e^2*f + 4*a^2*b^2*c*e^2*g - 4*a^2*b^2*c*e*f^2 - 4*a^3*b*e*f^2*g + 4*a^3*b*d*f*g^2 + 4*a*b^3*c^2*d*f - 4
*a*b^3*c*d^2*e - 4*a^3*b*c*g^3 - 4*a*b^3*c^3*g - 6*a^2*b^2*c^2*g^2 - 2*a^2*b^2*d^2*f^2 + 2*a^3*b*e^2*g^2 + 2*a
*b^3*c^2*e^2 + a^3*b*f^4 + a*b^3*d^4 - a^2*b^2*e^4 - a^4*g^4 - b^4*c^4, z, k)^2*a*b^3*d*x - 4*root(256*a^3*b^5
*z^4 + 256*a^3*b^4*f*z^3 - 64*a^3*b^3*e*g*z^2 - 64*a^2*b^4*c*e*z^2 + 96*a^3*b^3*f^2*z^2 - 32*a^2*b^4*d^2*z^2 -
 32*a^3*b^2*e*f*g*z - 32*a^2*b^3*c*e*f*z + 32*a^2*b^3*c*d*g*z + 16*a^3*b^2*d*g^2*z - 16*a^2*b^3*d^2*f*z + 16*a
^2*b^3*d*e^2*z + 16*a*b^4*c^2*d*z + 16*a^3*b^2*f^3*z + 8*a^2*b^2*c*d*f*g - 4*a^2*b^2*d^2*e*g + 4*a^2*b^2*d*e^2
*f + 4*a^2*b^2*c*e^2*g - 4*a^2*b^2*c*e*f^2 - 4*a^3*b*e*f^2*g + 4*a^3*b*d*f*g^2 + 4*a*b^3*c^2*d*f - 4*a*b^3*c*d
^2*e - 4*a^3*b*c*g^3 - 4*a*b^3*c^3*g - 6*a^2*b^2*c^2*g^2 - 2*a^2*b^2*d^2*f^2 + 2*a^3*b*e^2*g^2 + 2*a*b^3*c^2*e
^2 + a^3*b*f^4 + a*b^3*d^4 - a^2*b^2*e^4 - a^4*g^4 - b^4*c^4, z, k)*a*b^2*e^2*x - 4*root(256*a^3*b^5*z^4 + 256
*a^3*b^4*f*z^3 - 64*a^3*b^3*e*g*z^2 - 64*a^2*b^4*c*e*z^2 + 96*a^3*b^3*f^2*z^2 - 32*a^2*b^4*d^2*z^2 - 32*a^3*b^
2*e*f*g*z - 32*a^2*b^3*c*e*f*z + 32*a^2*b^3*c*d*g*z + 16*a^3*b^2*d*g^2*z - 16*a^2*b^3*d^2*f*z + 16*a^2*b^3*d*e
^2*z + 16*a*b^4*c^2*d*z + 16*a^3*b^2*f^3*z + 8*a^2*b^2*c*d*f*g - 4*a^2*b^2*d^2*e*g + 4*a^2*b^2*d*e^2*f + 4*a^2
*b^2*c*e^2*g - 4*a^2*b^2*c*e*f^2 - 4*a^3*b*e*f^2*g + 4*a^3*b*d*f*g^2 + 4*a*b^3*c^2*d*f - 4*a*b^3*c*d^2*e - 4*a
^3*b*c*g^3 - 4*a*b^3*c^3*g - 6*a^2*b^2*c^2*g^2 - 2*a^2*b^2*d^2*f^2 + 2*a^3*b*e^2*g^2 + 2*a*b^3*c^2*e^2 + a^3*b
*f^4 + a*b^3*d^4 - a^2*b^2*e^4 - a^4*g^4 - b^4*c^4, z, k)*a^2*b*g^2*x + 2*a*b*c*e*g + 2*a*b*d*e*f - 8*root(256
*a^3*b^5*z^4 + 256*a^3*b^4*f*z^3 - 64*a^3*b^3*e*g*z^2 - 64*a^2*b^4*c*e*z^2 + 96*a^3*b^3*f^2*z^2 - 32*a^2*b^4*d
^2*z^2 - 32*a^3*b^2*e*f*g*z - 32*a^2*b^3*c*e*f*z + 32*a^2*b^3*c*d*g*z + 16*a^3*b^2*d*g^2*z - 16*a^2*b^3*d^2*f*
z + 16*a^2*b^3*d*e^2*z + 16*a*b^4*c^2*d*z + 16*a^3*b^2*f^3*z + 8*a^2*b^2*c*d*f*g - 4*a^2*b^2*d^2*e*g + 4*a^2*b
^2*d*e^2*f + 4*a^2*b^2*c*e^2*g - 4*a^2*b^2*c*e*f^2 - 4*a^3*b*e*f^2*g + 4*a^3*b*d*f*g^2 + 4*a*b^3*c^2*d*f - 4*a
*b^3*c*d^2*e - 4*a^3*b*c*g^3 - 4*a*b^3*c^3*g - 6*a^2*b^2*c^2*g^2 - 2*a^2*b^2*d^2*f^2 + 2*a^3*b*e^2*g^2 + 2*a*b
^3*c^2*e^2 + a^3*b*f^4 + a*b^3*d^4 - a^2*b^2*e^4 - a^4*g^4 - b^4*c^4, z, k)*a*b^2*c*f + 8*root(256*a^3*b^5*z^4
 + 256*a^3*b^4*f*z^3 - 64*a^3*b^3*e*g*z^2 - 64*a^2*b^4*c*e*z^2 + 96*a^3*b^3*f^2*z^2 - 32*a^2*b^4*d^2*z^2 - 32*
a^3*b^2*e*f*g*z - 32*a^2*b^3*c*e*f*z + 32*a^2*b^3*c*d*g*z + 16*a^3*b^2*d*g^2*z - 16*a^2*b^3*d^2*f*z + 16*a^2*b
^3*d*e^2*z + 16*a*b^4*c^2*d*z + 16*a^3*b^2*f^3*z + 8*a^2*b^2*c*d*f*g - 4*a^2*b^2*d^2*e*g + 4*a^2*b^2*d*e^2*f +
 4*a^2*b^2*c*e^2*g - 4*a^2*b^2*c*e*f^2 - 4*a^3*b*e*f^2*g + 4*a^3*b*d*f*g^2 + 4*a*b^3*c^2*d*f - 4*a*b^3*c*d^2*e
 - 4*a^3*b*c*g^3 - 4*a*b^3*c^3*g - 6*a^2*b^2*c^2*g^2 - 2*a^2*b^2*d^2*f^2 + 2*a^3*b*e^2*g^2 + 2*a*b^3*c^2*e^2 +
 a^3*b*f^4 + a*b^3*d^4 - a^2*b^2*e^4 - a^4*g^4 - b^4*c^4, z, k)*a*b^2*d*e - 8*root(256*a^3*b^5*z^4 + 256*a^3*b
^4*f*z^3 - 64*a^3*b^3*e*g*z^2 - 64*a^2*b^4*c*e*z^2 + 96*a^3*b^3*f^2*z^2 - 32*a^2*b^4*d^2*z^2 - 32*a^3*b^2*e*f*
g*z - 32*a^2*b^3*c*e*f*z + 32*a^2*b^3*c*d*g*z + 16*a^3*b^2*d*g^2*z - 16*a^2*b^3*d^2*f*z + 16*a^2*b^3*d*e^2*z +
 16*a*b^4*c^2*d*z + 16*a^3*b^2*f^3*z + 8*a^2*b^2*c*d*f*g - 4*a^2*b^2*d^2*e*g + 4*a^2*b^2*d*e^2*f + 4*a^2*b^2*c
*e^2*g - 4*a^2*b^2*c*e*f^2 - 4*a^3*b*e*f^2*g + 4*a^3*b*d*f*g^2 + 4*a*b^3*c^2*d*f - 4*a*b^3*c*d^2*e - 4*a^3*b*c
*g^3 - 4*a*b^3*c^3*g - 6*a^2*b^2*c^2*g^2 - 2*a^2*b^2*d^2*f^2 + 2*a^3*b*e^2*g^2 + 2*a*b^3*c^2*e^2 + a^3*b*f^4 +
 a*b^3*d^4 - a^2*b^2*e^4 - a^4*g^4 - b^4*c^4, z, k)*a^2*b*f*g + a*b*d*f^2*x - a*b*e^2*f*x + 2*b^2*c*d*e*x - 8*
root(256*a^3*b^5*z^4 + 256*a^3*b^4*f*z^3 - 64*a^3*b^3*e*g*z^2 - 64*a^2*b^4*c*e*z^2 + 96*a^3*b^3*f^2*z^2 - 32*a
^2*b^4*d^2*z^2 - 32*a^3*b^2*e*f*g*z - 32*a^2*b^3*c*e*f*z + 32*a^2*b^3*c*d*g*z + 16*a^3*b^2*d*g^2*z - 16*a^2*b^
3*d^2*f*z + 16*a^2*b^3*d*e^2*z + 16*a*b^4*c^2*d*z + 16*a^3*b^2*f^3*z + 8*a^2*b^2*c*d*f*g - 4*a^2*b^2*d^2*e*g +
 4*a^2*b^2*d*e^2*f + 4*a^2*b^2*c*e^2*g - 4*a^2*b^2*c*e*f^2 - 4*a^3*b*e*f^2*g + 4*a^3*b*d*f*g^2 + 4*a*b^3*c^2*d
*f - 4*a*b^3*c*d^2*e - 4*a^3*b*c*g^3 - 4*a*b^3*c^3*g - 6*a^2*b^2*c^2*g^2 - 2*a^2*b^2*d^2*f^2 + 2*a^3*b*e^2*g^2
 + 2*a*b^3*c^2*e^2 + a^3*b*f^4 + a*b^3*d^4 - a^2*b^2*e^4 - a^4*g^4 - b^4*c^4, z, k)*a*b^2*c*g*x + 8*root(256*a
^3*b^5*z^4 + 256*a^3*b^4*f*z^3 - 64*a^3*b^3*e*g*z^2 - 64*a^2*b^4*c*e*z^2 + 96*a^3*b^3*f^2*z^2 - 32*a^2*b^4*d^2
*z^2 - 32*a^3*b^2*e*f*g*z - 32*a^2*b^3*c*e*f*z + 32*a^2*b^3*c*d*g*z + 16*a^3*b^2*d*g^2*z - 16*a^2*b^3*d^2*f*z
+ 16*a^2*b^3*d*e^2*z + 16*a*b^4*c^2*d*z + 16*a^3*b^2*f^3*z + 8*a^2*b^2*c*d*f*g - 4*a^2*b^2*d^2*e*g + 4*a^2*b^2
*d*e^2*f + 4*a^2*b^2*c*e^2*g - 4*a^2*b^2*c*e*f^2 - 4*a^3*b*e*f^2*g + 4*a^3*b*d*f*g^2 + 4*a*b^3*c^2*d*f - 4*a*b
^3*c*d^2*e - 4*a^3*b*c*g^3 - 4*a*b^3*c^3*g - 6*a^2*b^2*c^2*g^2 - 2*a^2*b^2*d^2*f^2 + 2*a^3*b*e^2*g^2 + 2*a*b^3
*c^2*e^2 + a^3*b*f^4 + a*b^3*d^4 - a^2*b^2*e^4 - a^4*g^4 - b^4*c^4, z, k)*a*b^2*d*f*x - 2*a*b*c*f*g*x + 2*a*b*
d*e*g*x)*root(256*a^3*b^5*z^4 + 256*a^3*b^4*f*z^3 - 64*a^3*b^3*e*g*z^2 - 64*a^2*b^4*c*e*z^2 + 96*a^3*b^3*f^2*z
^2 - 32*a^2*b^4*d^2*z^2 - 32*a^3*b^2*e*f*g*z - 32*a^2*b^3*c*e*f*z + 32*a^2*b^3*c*d*g*z + 16*a^3*b^2*d*g^2*z -
16*a^2*b^3*d^2*f*z + 16*a^2*b^3*d*e^2*z + 16*a*b^4*c^2*d*z + 16*a^3*b^2*f^3*z + 8*a^2*b^2*c*d*f*g - 4*a^2*b^2*
d^2*e*g + 4*a^2*b^2*d*e^2*f + 4*a^2*b^2*c*e^2*g - 4*a^2*b^2*c*e*f^2 - 4*a^3*b*e*f^2*g + 4*a^3*b*d*f*g^2 + 4*a*
b^3*c^2*d*f - 4*a*b^3*c*d^2*e - 4*a^3*b*c*g^3 - 4*a*b^3*c^3*g - 6*a^2*b^2*c^2*g^2 - 2*a^2*b^2*d^2*f^2 + 2*a^3*
b*e^2*g^2 + 2*a*b^3*c^2*e^2 + a^3*b*f^4 + a*b^3*d^4 - a^2*b^2*e^4 - a^4*g^4 - b^4*c^4, z, k), k, 1, 4) - (g*x)
/b